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They look cool! 
 
Freedom for the individual! 
 
Economic benefits! 
 
Driving is dangerous exciting! 

Confessions of a car person 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>70% of car deaths in 1970: preventable! 

4Source: Bureau of Infrastructure, Transport and Regional Economics, Canberra, Australia (2009)



Software can do amazing things! 
 
More control over your life! 
 
Economic benefits! 
 
Code is dangerous exciting!  
 
 

The Era of Computing: 1970s 

5Pioneers of modern systems programming Dennis Ritchie & Ken Thompson, in 1972



Fast forward to the 2020s 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Software can do amazing things! 
 
More control over your life! 
 
Economic benefits! 
 
Code is dangerous exciting dangerous!  
 
 



1. Digital threats will continue to rise in scale & sophistication. 

Key motivation 1/4 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July 2022 - July 2023: ~24k reported vulnerabilities  

July 2023 - July 2024: ~33k reported vulnerabilities 

●  37% increase  

Enisa Threat Landscape 2024

State actors, cybercriminals, “hacktivists”

https://www.enisa.europa.eu/publications/enisa-threat-landscape-2024


2. Our reliance on digital technologies will not decrease. 

Key motivation 2/4 

8



3. Costs of after-the-fact patching are becoming unsustainable. 

 

Key motivation 3/4 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“We [...] are still struggling to stem the flood” 

“We cannot patch fast enough”  

Orange Cyberdefense Security Navigator 2025 

https://www.orangecyberdefense.com/nl/security-navigator


4. Shortage of cybersecurity professionals makes a reactive approach untenable. 

Key motivation 4/4 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“Today [2024], four million 
workers in the cybersecurity 
industry are needed worldwide” 
 
WEF Strategic Cybersecurity Talent 
Framework White Paper 

https://www3.weforum.org/docs/WEF_Strategic_Cybersecurity_Talent_Framework_2024.pdf
https://www3.weforum.org/docs/WEF_Strategic_Cybersecurity_Talent_Framework_2024.pdf


We need a different approach 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We need more 

Security by Design 



● Fundamental concept in important EU legislation such as the Cyber Resilience Act (CRA) 

● Annex I: Essential Requirements, including: 

○ Risk-based approach to cyber security 

○ … without known exploitable vulnerabilities… 

○ Limit attack surface 

○ Reduce the impact of incidents 

● SbD at all layers, down to our very building blocks 
 

Security by Design (SbD): quick recap 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We need better building blocks 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We need building blocks that are 

Memory safe 



A large class of vulnerabilities can be avoided 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~Up to 70% of vulnerabilities in memory unsafe code bases is memory safety related! 

Source: Microsoft ‘We need a safer systems programming language‘, July 2019



There’s a lot to gain! 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Similar results in Chromium 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~70% of critical severity  
security bugs in Chromium are 
due to memory safety 
 
Chromium Security / Memory safety 

+

https://www.chromium.org/Home/chromium-security/memory-safety/


0-day exploits tracked by Google Project Zero 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CVE-2025-24085 Apple iOS Memory Corruption Use after free in CoreMedia
CVE-2025-24200 Apple iOS Security Feature Bypass A physical attack may disable USB Restricted 

Mode
CVE-2025-21391 Microsoft Windows Logic Error Windows Storage Elevation of Privilege 

Vulnerability
CVE-2025-21418 Microsoft Windows Memory Corruption Windows Ancillary Function Driver for WinSock 

Elevation of Privilege Vulnerability
CVE-2025-24201 Apple WebKit Memory Corruption OOB write
CVE-2025-26633 Microsoft Windows Security Feature Bypass Microsoft Management Console Security 

Feature Bypass
CVE-2025-24993 Microsoft Windows Memory Corruption Windows NTFS Remote Code Execution 

Vulnerability
CVE-2025-24985 Microsoft Windows Memory Corruption Windows Fast FAT File System Driver Remote 

Code Execution Vulnerability
CVE-2025-24983 Microsoft Windows Memory Corruption Windows Win32 Kernel Subsystem Elevation 

of Privilege Vulnerability
CVE-2025-24984 Microsoft Windows Information Disclosure Windows NTFS Information Disclosure 

Vulnerability



0-day exploits tracked by Google Project Zero 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CVE-2025-24991 Microsoft Windows Information Disclosure Windows NTFS Information Disclosure 
Vulnerability

CVE-2025-22225 VMWare VMware ESXi Memory Corruption OOB VMware ESXi
CVE-2025-27363 FreeType FreeType Memory Corruption OOB write
CVE-2025-2783 Google Chrome Logic Error Windows Chrome sandbox escape
CVE-2025-31200 Apple iOS Memory Corruption Memory Corruption in CoreAudio
CVE-2025-31201 Apple iOS PAC bypass Arbitrary read and write
CVE-2025-29824 Microsoft Windows Memory Corruption Windows Common Log File System Driver 

Elevation of Privilege Vulnerability
CVE-2025-32701 Microsoft Windows Memory Corruption Windows Common Log File System Driver 

Elevation of Privilege Vulnerability
CVE-2025-30397 Microsoft Windows Memory Corruption Scripting Engine Memory Corruption 

Vulnerability
CVE-2025-30400 Microsoft Windows Memory Corruption Microsoft DWM Core Library Elevation of 

Privilege Vulnerability
CVE-2025-32709 Microsoft Windows Memory Corruption Windows Ancillary Function Driver for WinSock 

Elevation of Privilege Vulnerability
CVE-2025-32706 Microsoft Windows Memory Corruption Windows Common Log File System Driver 

Elevation of Privilege Vulnerability



0-day exploits tracked by Google Project Zero 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CVE-2025-5419 Google Chrome Memory corruption OOB write in V8
CVE-2025-21479 Qualcomm GPU Memory corruption Arbitrary physical write vulnerability
CVE-2025-21480 Qualcomm GPU Memory corruption Arbitrary physical write vulnerability
CVE-2025-27038 Qualcomm GPU Memory corruption UAF
CVE-2025-6554 Google Chrome Memory corruption Type confusion in V8
CVE-2025-33053 Microsoft Windows Logic Error Internet Shortcut Files Remote Code 

Execution Vulnerability
CVE-2025-6558 Google Chrome Memory corruption Insufficient validation of untrusted input
CVE-2025-53770 Microsoft Sharepoint Logic Error Deserialization of untrusted data
CVE-2025-43300 Apple iOS Memory corruption Memory corruption in ImageIO
CVE-2025-21043 Samsung Samsung Mobile Memory corruption OOB write in libimagecodec.quram.so
CVE-2025-55177 Meta WhatsApp Security Feature Bypass Incomplete authorization of linked device 

synchronization messages
CVE-2025-10585 Google Chrome Memory corruption Type confusion in V8
CVE-2025-38352 Google Android Memory corruption Race condition in kernel
CVE-2025-48543 Google Android Memory corruption Deserialization of untrusted data in ART



Google Project Zero finds ~70% as well 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26 out of 36 0-days are memory 
safety vulnerabilities! 
 

72%! 



Using memory safe technology is foundational 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Limit attack 
surface 

Reduce impact 
of incidents 

Risk-based 
approach to 

cybersecurity 

Secure by design system 

… 



Using memory safe technology is foundational 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Limit attack 
surface 

Reduce impact 
of incidents 

Risk-based 
approach to 

cybersecurity 

Secure by design system 

… 

Memory safe building blocks



● Memory safety is about programming languages 

● Building blocks of our digital systems 

● Built-in protection against accidentally mishandling memory access 

● Memory safe: Rust, Swift and Go, … 

● Memory unsafe: like C and C++ 

What is memory safe technology? 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● Memory unsafe code is everywhere! 

● Operating systems such as Windows, macOS, iOS and Android 

● Microsoft Office is largely written in C++ 

● VPNs 

● Screen sharing solutions 

● Apps like Zoom and Teams 

Memory unsafety in the wild 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● Remain despite developer training and tooling 

● Hard to detect 

● Often used in exploits 

● Costly to fix  

 

Memory safety vulnerabilities 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RTDi 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The impact is real, also in The Netherlands 

Public Prosecution Service: compromised 
 

● Severe disruption for many weeks 
 

● Due to CVE-2025-6543 in Citrix Netscaler 
 

● Common Weakness Enumeration CWE-119: 
 
Improper Restriction of Operations within the 
Bounds of a Memory Buffer

Computable headlines (22 july 2025, 3 september 2025)



The Dutch Ministry of Defense hack 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● COATHANGER malware 

● CVE-2022-42475 in FortiGate 

● Heap-based buffer overflow 



● Problem is overwhelmingly with new code 

● Using memory safe technology actually fixes the problem 

Eliminating memory safety vulnerabilities in Android 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From 76% to 24% over 6 years 

Despite the majority of code still being unsafe. 

Eliminating Memory Safety Vulnerabilities at 
the Source 

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html


RTDi 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CWE-119, also known as: buffer overflow, buffer 
overrun, … 

https://cwe.mitre.org/data/definitions/119.html

https://cwe.mitre.org/data/definitions/119.html


RTDi 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The Principle Idea 

A D M I N 1 2 3

(you are here)



RTDi 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The Principle Idea 

A D M I N 1 2 3

(you cannot get here)



RTDi 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CWE-119, also known as: buffer overflow, buffer 
overrun, … 

Common consequences: 

[...] If the attacker can overwrite a pointer's worth of memory (usually 32 or 64 bits), they 
can alter the intended control flow [...] 

Mitigation:  

Use a language that does not allow this weakness to occur or provides constructs that 
make this weakness easier to avoid. 

https://cwe.mitre.org/data/definitions/119.html

https://cwe.mitre.org/data/definitions/119.html


RTDi 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Not just buffer overflows! 

CWE-134: Externally-Controlled Format String 

CWE-244: Heap Inspection 

CWE-415: Double Free 

CWE-416: Use After Free 

CWE-690: NULL Dereference 

CWE-824: Uninitialized Memory 

 

https://cwe.mitre.org/data/definitions/1399.html

https://cwe.mitre.org/data/definitions/119.html


RTDi 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Attack the root cause 

Image credit: Andreas Weith (CC-BY-SA 4.0)

There are mitigations against this! 

 

We can use code analysis tools. 

 

 

 

But they can be stopped. 

At the source. 



So I have to use their favorite programming language? 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NO! 



We’re not the only ones who care…! 

36

● CISA’s campaign as of 
April 2023 

● 7 publications about 
memory safety 

● Numerous co-authoring 
organizations 

● Even the White House 
cares! (or used to…) 



18 co-authoring organizations 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● Our own NCSC!



Publication highlights 1/4 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● The use of memory safe programming languages is the  
#1 recommended tactic (of 12 in total).



Publication highlights 2/4 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● “Eliminating this vulnerability class should be seen as 
a business imperative” 



Remember, this class 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Publication highlights 3/4 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● “[...] memory safe hardware and formal methods can 
be excellent complementary approaches”  

● “one of the most impactful actions [...] is adopting 
memory safe programming languages.” 



 
● CISA and FBI: buffer overflow vulnerabilities are unforgivable defects. 

 
● “[...] the use of memory-unsafe programming languages [...] poses 

unacceptable risk to our national and economic security.” 

Publication highlights 4/4 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Apple is in the game too 

43



What about the EU? 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European publication coming up! 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Improving Europe's cybersecurity posture 
through memory safety 
 

Statement on GitHub

Hugo van de Pol, Trifecta Tech Foundation 
Tara Tarakiyee, Sovereign Tech Agency



Investments will need to be made 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● Investigate their specific business case 

● Build a roadmap for step-by-step adoption 

● Focus on new systems / new code 

● Upskill engineers 



Investments will need to be made 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An ounce of prevention is worth a pound of cure 

● Investigate their specific business case 

● Build a roadmap for step-by-step adoption 

● Focus on new systems / new code 

● Upskill engineers 



There is a world to gain! 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Limit attack 
surface 

Reduce impact 
of incidents 

Risk-based 
approach to 

cybersecurity 

Secure by design system 

… 



What can you do? 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● Help spread the word! 

● Policy makers:  

○ The CRA standardization process 

○ Conditions you set in procurement 

● Industry:  

○ Investigate your business case for incremental adoption 

○ Grab the current momentum 

○ Will you still be fixing all those vulnerabilities 10 years from now? 

 



Getting in touch 
Contact us or check out Tweede Golf on 
https://tweedegolf.nl or LinkedIn 

Hugo van de Pol 
Director 
hugo@tweedegolf.nl 
hugovandepol.bsky.social 

Thanks 

Marc Schoolderman 
Systems software engineer 
marc@tweedegolf.nl 

https://tweedegolf.nl
https://www.linkedin.com/company/tweede-golf-software-engineering
mailto:hugo@tweedegolf.nl
https://bsky.app/profile/hugovandepol.bsky.social
mailto:marc@tweedegolf.nl


Further reading 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1. Browse the CRA:  
http://www.european-cyber-resilience-act.com 

2. Insight into the CRAs standardization process: 
https://fluchsfriction.medium.com/cyber-resilience-act-when-will-requirements-finally-get-mor
e-specific-a990cc1dab24 

3. NCSC Advisory Citrix NetScaler ADC and NetScaler Gateway: 
https://advisories.ncsc.nl/2025/ncsc-2025-0196.html 

4. MIVD AIVD Advisory Coathanger: 
https://www.ncsc.nl/documenten/publicaties/2024/februari/6/mivd-aivd-advisory-coathanger-tl
p-clear 

5. Tracking sheet Google Project Zero 
https://googleprojectzero.github.io/0days-in-the-wild/rca.html 

 

 

http://www.european-cyber-resilience-act.com
https://fluchsfriction.medium.com/cyber-resilience-act-when-will-requirements-finally-get-more-specific-a990cc1dab24
https://fluchsfriction.medium.com/cyber-resilience-act-when-will-requirements-finally-get-more-specific-a990cc1dab24
https://advisories.ncsc.nl/2025/ncsc-2025-0196.html
https://www.ncsc.nl/documenten/publicaties/2024/februari/6/mivd-aivd-advisory-coathanger-tlp-clear
https://www.ncsc.nl/documenten/publicaties/2024/februari/6/mivd-aivd-advisory-coathanger-tlp-clear
https://googleprojectzero.github.io/0days-in-the-wild/rca.html


Further reading 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6. Memory Safe Languages in Android 13 

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html 

7. Eliminating Memory Safety Vulnerabilities at the Source 
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulner...-Android.html 

 

 

 

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html


Bonus material 



RTDi 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Our own experience 

Background 

● NCSC-2021-0982, a.k.a. NAME:WRECK 
https://advisories.ncsc.nl/2021/ncsc-2021-0982.html 

● Affecting medical, industrial, aerospace, Iot devices. 
 

Rewrite the defective code in Rust: 

● Did engineers make mistakes?  Yes 

● Did engineers cause vulnerabilities? No. 

https://tweedegolf.nl/en/blog/152/does-using-rust-really-make-your-software-safer

test summary

memory unsafe 
language 

https://advisories.ncsc.nl/2021/ncsc-2021-0982.html
https://tweedegolf.nl/en/blog/152/does-using-rust-really-make-your-software-safer

