
You’re not secure by design 
if you’re not memory safe! 

ONE Conference 2025 
 Hugo van de Pol, Marc Schoolderman 

Hugo van de Pol 

● Director at Tweede Golf since 2018 

● Board member at Trifecta Tech Foundation 

● Adoption of memory safe technology (Rust) 

 

Marc Schoolderman 

● Systems software engineer at Tweede Golf 

● Former researcher and computer science teacher at
Radboud University Nijmegen, The Netherlands 

 

About us 

2

They look cool! 
 
Freedom for the individual! 
 
Economic benefits! 
 
Driving is dangerous exciting! 

Confessions of a car person 

3

>70% of car deaths in 1970: preventable! 

4Source: Bureau of Infrastructure, Transport and Regional Economics, Canberra, Australia (2009)

Software can do amazing things! 
 
More control over your life! 
 
Economic benefits! 
 
Code is dangerous exciting!  
 
 

The Era of Computing: 1970s 

5Pioneers of modern systems programming Dennis Ritchie & Ken Thompson, in 1972

Fast forward to the 2020s 

6

Software can do amazing things! 
 
More control over your life! 
 
Economic benefits! 
 
Code is dangerous exciting dangerous!  
 
 

1. Digital threats will continue to rise in scale & sophistication. 

Key motivation 1/4 

7

July 2022 - July 2023: ~24k reported vulnerabilities  

July 2023 - July 2024: ~33k reported vulnerabilities 

● 37% increase  

Enisa Threat Landscape 2024

State actors, cybercriminals, “hacktivists”

https://www.enisa.europa.eu/publications/enisa-threat-landscape-2024

2. Our reliance on digital technologies will not decrease. 

Key motivation 2/4 

8

3. Costs of after-the-fact patching are becoming unsustainable. 

 

Key motivation 3/4 

9

“We [...] are still struggling to stem the flood” 

“We cannot patch fast enough”  

Orange Cyberdefense Security Navigator 2025 

https://www.orangecyberdefense.com/nl/security-navigator

4. Shortage of cybersecurity professionals makes a reactive approach untenable. 

Key motivation 4/4 

10

“Today [2024], four million
workers in the cybersecurity
industry are needed worldwide” 
 
WEF Strategic Cybersecurity Talent
Framework White Paper 

https://www3.weforum.org/docs/WEF_Strategic_Cybersecurity_Talent_Framework_2024.pdf
https://www3.weforum.org/docs/WEF_Strategic_Cybersecurity_Talent_Framework_2024.pdf

We need a different approach 

11

We need more 

Security by Design 

● Fundamental concept in important EU legislation such as the Cyber Resilience Act (CRA) 

● Annex I: Essential Requirements, including: 

○ Risk-based approach to cyber security 

○ … without known exploitable vulnerabilities… 

○ Limit attack surface 

○ Reduce the impact of incidents 

● SbD at all layers, down to our very building blocks 
 

Security by Design (SbD): quick recap 

12

We need better building blocks 

13

We need building blocks that are 

Memory safe 

A large class of vulnerabilities can be avoided 

14

~Up to 70% of vulnerabilities in memory unsafe code bases is memory safety related! 

Source: Microsoft ‘We need a safer systems programming language‘, July 2019

There’s a lot to gain! 

15

Similar results in Chromium 

16

~70% of critical severity  
security bugs in Chromium are
due to memory safety 
 
Chromium Security / Memory safety 

+

https://www.chromium.org/Home/chromium-security/memory-safety/

0-day exploits tracked by Google Project Zero 

17

CVE-2025-24085 Apple iOS Memory Corruption Use after free in CoreMedia
CVE-2025-24200 Apple iOS Security Feature Bypass A physical attack may disable USB Restricted

Mode
CVE-2025-21391 Microsoft Windows Logic Error Windows Storage Elevation of Privilege

Vulnerability
CVE-2025-21418 Microsoft Windows Memory Corruption Windows Ancillary Function Driver for WinSock

Elevation of Privilege Vulnerability
CVE-2025-24201 Apple WebKit Memory Corruption OOB write
CVE-2025-26633 Microsoft Windows Security Feature Bypass Microsoft Management Console Security

Feature Bypass
CVE-2025-24993 Microsoft Windows Memory Corruption Windows NTFS Remote Code Execution

Vulnerability
CVE-2025-24985 Microsoft Windows Memory Corruption Windows Fast FAT File System Driver Remote

Code Execution Vulnerability
CVE-2025-24983 Microsoft Windows Memory Corruption Windows Win32 Kernel Subsystem Elevation

of Privilege Vulnerability
CVE-2025-24984 Microsoft Windows Information Disclosure Windows NTFS Information Disclosure

Vulnerability

0-day exploits tracked by Google Project Zero 

18

CVE-2025-24991 Microsoft Windows Information Disclosure Windows NTFS Information Disclosure
Vulnerability

CVE-2025-22225 VMWare VMware ESXi Memory Corruption OOB VMware ESXi
CVE-2025-27363 FreeType FreeType Memory Corruption OOB write
CVE-2025-2783 Google Chrome Logic Error Windows Chrome sandbox escape
CVE-2025-31200 Apple iOS Memory Corruption Memory Corruption in CoreAudio
CVE-2025-31201 Apple iOS PAC bypass Arbitrary read and write
CVE-2025-29824 Microsoft Windows Memory Corruption Windows Common Log File System Driver

Elevation of Privilege Vulnerability
CVE-2025-32701 Microsoft Windows Memory Corruption Windows Common Log File System Driver

Elevation of Privilege Vulnerability
CVE-2025-30397 Microsoft Windows Memory Corruption Scripting Engine Memory Corruption

Vulnerability
CVE-2025-30400 Microsoft Windows Memory Corruption Microsoft DWM Core Library Elevation of

Privilege Vulnerability
CVE-2025-32709 Microsoft Windows Memory Corruption Windows Ancillary Function Driver for WinSock

Elevation of Privilege Vulnerability
CVE-2025-32706 Microsoft Windows Memory Corruption Windows Common Log File System Driver

Elevation of Privilege Vulnerability

0-day exploits tracked by Google Project Zero 

19

CVE-2025-5419 Google Chrome Memory corruption OOB write in V8
CVE-2025-21479 Qualcomm GPU Memory corruption Arbitrary physical write vulnerability
CVE-2025-21480 Qualcomm GPU Memory corruption Arbitrary physical write vulnerability
CVE-2025-27038 Qualcomm GPU Memory corruption UAF
CVE-2025-6554 Google Chrome Memory corruption Type confusion in V8
CVE-2025-33053 Microsoft Windows Logic Error Internet Shortcut Files Remote Code

Execution Vulnerability
CVE-2025-6558 Google Chrome Memory corruption Insufficient validation of untrusted input
CVE-2025-53770 Microsoft Sharepoint Logic Error Deserialization of untrusted data
CVE-2025-43300 Apple iOS Memory corruption Memory corruption in ImageIO
CVE-2025-21043 Samsung Samsung Mobile Memory corruption OOB write in libimagecodec.quram.so
CVE-2025-55177 Meta WhatsApp Security Feature Bypass Incomplete authorization of linked device

synchronization messages
CVE-2025-10585 Google Chrome Memory corruption Type confusion in V8
CVE-2025-38352 Google Android Memory corruption Race condition in kernel
CVE-2025-48543 Google Android Memory corruption Deserialization of untrusted data in ART

Google Project Zero finds ~70% as well 

20

26 out of 36 0-days are memory
safety vulnerabilities! 
 

72%! 

Using memory safe technology is foundational 

21

Limit attack
surface 

Reduce impact
of incidents 

Risk-based
approach to

cybersecurity 

Secure by design system 

… 

Using memory safe technology is foundational 

22

Limit attack
surface 

Reduce impact
of incidents 

Risk-based
approach to

cybersecurity 

Secure by design system 

… 

Memory safe building blocks

● Memory safety is about programming languages 

● Building blocks of our digital systems 

● Built-in protection against accidentally mishandling memory access 

● Memory safe: Rust, Swift and Go, … 

● Memory unsafe: like C and C++ 

What is memory safe technology? 

23

● Memory unsafe code is everywhere! 

● Operating systems such as Windows, macOS, iOS and Android 

● Microsoft Office is largely written in C++ 

● VPNs 

● Screen sharing solutions 

● Apps like Zoom and Teams 

Memory unsafety in the wild 

24

● Remain despite developer training and tooling 

● Hard to detect 

● Often used in exploits 

● Costly to fix  

 

Memory safety vulnerabilities 

25

RTDi 

26

The impact is real, also in The Netherlands 

Public Prosecution Service: compromised 
 

● Severe disruption for many weeks 
 

● Due to CVE-2025-6543 in Citrix Netscaler 
 

● Common Weakness Enumeration CWE-119: 
 
Improper Restriction of Operations within the
Bounds of a Memory Buffer

Computable headlines (22 july 2025, 3 september 2025)

The Dutch Ministry of Defense hack 

27

● COATHANGER malware 

● CVE-2022-42475 in FortiGate 

● Heap-based buffer overflow 

● Problem is overwhelmingly with new code 

● Using memory safe technology actually fixes the problem 

Eliminating memory safety vulnerabilities in Android 

28

From 76% to 24% over 6 years 

Despite the majority of code still being unsafe. 

Eliminating Memory Safety Vulnerabilities at
the Source 

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

RTDi 

29

CWE-119, also known as: buffer overflow, buffer
overrun, … 

https://cwe.mitre.org/data/definitions/119.html

https://cwe.mitre.org/data/definitions/119.html

RTDi 

30

The Principle Idea 

A D M I N 1 2 3

(you are here)

RTDi 

31

The Principle Idea 

A D M I N 1 2 3

(you cannot get here)

RTDi 

32

CWE-119, also known as: buffer overflow, buffer
overrun, … 

Common consequences: 

[...] If the attacker can overwrite a pointer's worth of memory (usually 32 or 64 bits), they
can alter the intended control flow [...] 

Mitigation:  

Use a language that does not allow this weakness to occur or provides constructs that
make this weakness easier to avoid. 

https://cwe.mitre.org/data/definitions/119.html

https://cwe.mitre.org/data/definitions/119.html

RTDi 

33

Not just buffer overflows! 

CWE-134: Externally-Controlled Format String 

CWE-244: Heap Inspection 

CWE-415: Double Free 

CWE-416: Use After Free 

CWE-690: NULL Dereference 

CWE-824: Uninitialized Memory 

 

https://cwe.mitre.org/data/definitions/1399.html

https://cwe.mitre.org/data/definitions/119.html

RTDi 

34

Attack the root cause 

Image credit: Andreas Weith (CC-BY-SA 4.0)

There are mitigations against this! 

 

We can use code analysis tools. 

 

 

 

But they can be stopped. 

At the source. 

So I have to use their favorite programming language? 

35

NO! 

We’re not the only ones who care…! 

36

● CISA’s campaign as of
April 2023 

● 7 publications about
memory safety 

● Numerous co-authoring
organizations 

● Even the White House
cares! (or used to…) 

18 co-authoring organizations 

37

● Our own NCSC!

Publication highlights 1/4 

38

● The use of memory safe programming languages is the  
#1 recommended tactic (of 12 in total).

Publication highlights 2/4 

39

● “Eliminating this vulnerability class should be seen as
a business imperative” 

Remember, this class 

40

Publication highlights 3/4 

41

● “[...] memory safe hardware and formal methods can
be excellent complementary approaches”  

● “one of the most impactful actions [...] is adopting
memory safe programming languages.” 

 
● CISA and FBI: buffer overflow vulnerabilities are unforgivable defects. 

 
● “[...] the use of memory-unsafe programming languages [...] poses

unacceptable risk to our national and economic security.” 

Publication highlights 4/4 

42

Apple is in the game too 

43

What about the EU? 

44

European publication coming up! 

45

 

Improving Europe's cybersecurity posture
through memory safety 
 

Statement on GitHub

Hugo van de Pol, Trifecta Tech Foundation 
Tara Tarakiyee, Sovereign Tech Agency

Investments will need to be made 

46

● Investigate their specific business case 

● Build a roadmap for step-by-step adoption 

● Focus on new systems / new code 

● Upskill engineers 

Investments will need to be made 

47

An ounce of prevention is worth a pound of cure 

● Investigate their specific business case 

● Build a roadmap for step-by-step adoption 

● Focus on new systems / new code 

● Upskill engineers 

There is a world to gain! 

48

Limit attack
surface 

Reduce impact
of incidents 

Risk-based
approach to

cybersecurity 

Secure by design system 

… 

What can you do? 

49

● Help spread the word! 

● Policy makers:  

○ The CRA standardization process 

○ Conditions you set in procurement 

● Industry:  

○ Investigate your business case for incremental adoption 

○ Grab the current momentum 

○ Will you still be fixing all those vulnerabilities 10 years from now? 

 

Getting in touch 
Contact us or check out Tweede Golf on
https://tweedegolf.nl or LinkedIn 

Hugo van de Pol 
Director 
hugo@tweedegolf.nl 
hugovandepol.bsky.social 

Thanks 

Marc Schoolderman 
Systems software engineer 
marc@tweedegolf.nl 

https://tweedegolf.nl
https://www.linkedin.com/company/tweede-golf-software-engineering
mailto:hugo@tweedegolf.nl
https://bsky.app/profile/hugovandepol.bsky.social
mailto:marc@tweedegolf.nl

Further reading 

51

1. Browse the CRA:  
http://www.european-cyber-resilience-act.com 

2. Insight into the CRAs standardization process:
https://fluchsfriction.medium.com/cyber-resilience-act-when-will-requirements-finally-get-mor
e-specific-a990cc1dab24 

3. NCSC Advisory Citrix NetScaler ADC and NetScaler Gateway: 
https://advisories.ncsc.nl/2025/ncsc-2025-0196.html 

4. MIVD AIVD Advisory Coathanger: 
https://www.ncsc.nl/documenten/publicaties/2024/februari/6/mivd-aivd-advisory-coathanger-tl
p-clear 

5. Tracking sheet Google Project Zero 
https://googleprojectzero.github.io/0days-in-the-wild/rca.html 

 

 

http://www.european-cyber-resilience-act.com
https://fluchsfriction.medium.com/cyber-resilience-act-when-will-requirements-finally-get-more-specific-a990cc1dab24
https://fluchsfriction.medium.com/cyber-resilience-act-when-will-requirements-finally-get-more-specific-a990cc1dab24
https://advisories.ncsc.nl/2025/ncsc-2025-0196.html
https://www.ncsc.nl/documenten/publicaties/2024/februari/6/mivd-aivd-advisory-coathanger-tlp-clear
https://www.ncsc.nl/documenten/publicaties/2024/februari/6/mivd-aivd-advisory-coathanger-tlp-clear
https://googleprojectzero.github.io/0days-in-the-wild/rca.html

Further reading 

52

6. Memory Safe Languages in Android 13 

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html 

7. Eliminating Memory Safety Vulnerabilities at the Source 
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulner...-Android.html 

 

 

 

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

Bonus material 

RTDi 

54

Our own experience 

Background 

● NCSC-2021-0982, a.k.a. NAME:WRECK 
https://advisories.ncsc.nl/2021/ncsc-2021-0982.html 

● Affecting medical, industrial, aerospace, Iot devices. 
 

Rewrite the defective code in Rust: 

● Did engineers make mistakes? Yes 

● Did engineers cause vulnerabilities? No. 

https://tweedegolf.nl/en/blog/152/does-using-rust-really-make-your-software-safer

test summary

memory unsafe
language 

https://advisories.ncsc.nl/2021/ncsc-2021-0982.html
https://tweedegolf.nl/en/blog/152/does-using-rust-really-make-your-software-safer

