
Estimating noise for clock-synchronizing Kalman
filters

David Venhoek
Tweede Golf B.V.

Nijmegen, The Netherlands
david@tweedegolf.com

COPYRIGHT NOTICE

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.



Estimating noise for clock-synchronizing Kalman
filters

David Venhoek
Tweede Golf B.V.

Nijmegen, The Netherlands
david@tweedegolf.com

Abstract—We implemented methods to determine the main
uncertainty parameters for a Kalman-based clock servo whilst
running that servo. This allowed us to provide a clock servo that
can provide strong synchronization performance and accurate
synchronization error estimates without manual tuning for any
specific hardware. Evaluating the servo on real hardware we
find that it provides synchronization accurate to about twice the
resolution of the clock. Furthermore, the parameter estimation
seemed to introduce only a modest amount of additional startup
time for the filter at around 10 minutes.

Index Terms—Clocks, Synchronization, Kalman filters, Param-
eter estimation

I. INTRODUCTION

When distributing time over a network, a critical component
is processing of the measurements and using them to decide
how to steer the clock. The logic for how to do this is often
called a clock servo.

With recent wider scale deployments in datacenters, such as
those at Meta [1], how to design a well-functioning clock servo
for use with PTP [2] remains an interesting topic. Proportional-
integral control-based servos such as those considered in [3]
work but require tuning specific to the used hardware and
network conditions. Furthermore, such servos cannot provide
an estimate of current synchronization precision.

Kalman filter [4] based clock servos such as those in [5]–
[8] can provide such estimates. However, they are still limited
by the need for estimates of both measurement noise and
oscillator stability. Furthermore, those estimates have direct
impact on the precision estimate of the synchronization. Thus
these will need to be provided on a per-setup basis to provide
valid precision estimates.

This requirement for setup-specific calibration imposes an
implementation barrier for end users, especially in the context
of general purpose software implementations of PTP. They
either need specialized knowledge to properly tune the imple-
mentation for their hardware, or accept worse synchronization
performance and/or precision estimates.

This paper aims to alleviate this, by providing methods
for determining the primary noise parameters needed for a
Kalman filter based clock servo whilst running the servo. This
allows the servo to effectively ”learn” the properties of the
environment in which it is running, removing the need for the
user to manually tune it.

Part of the work in this paper was supported by the Sovereign Tech Fund.

We describe the design of our servo in section II, zooming
in on the estimation of the uncertainty inputs to the Kalman
filter in section III. This servo was implemented and tested on
real hardware, as described in section IV. Finally, we discuss
the results of this testing, and how this approach can be further
refined, in sections V and VI

II. KALMAN FILTER

In the design of our servo, we follow an event-based ap-
proach similar to that in [8], with an additional state parameter
for the transmission delay. Letting θ denote the offset between
remote and local clock, ω the frequency error of the local
clock with respect to the remote clock, and δ the (one-way)
transmission delay. Thus, our state is s = (θ, ω, δ)T , with
corresponding evolution matrix

F (∆) =

1 ∆ 0
0 1 0
0 0 1

 , (1)

where ∆ is the time interval according to the local clock
since the filter was last brought up-to-date. The filter is only
brought up-to-date to process newly received measurements,
meaning that ∆ varies with the random intervals on which
delay messages are sent.

For our noise model, we take the continuum limit of the
model used in [8]. This is extended for the transmission delay
by assuming the later evolves independently, adding additional
covariance proportional to the square of the transmission delay.

This gives a process covariance matrix for the infinitesimal
timesteps that looks like

lim
∆→0

Q(∆)

∆
=

B 0 0
0 A 0
0 0 Cδ2

 (2)

which, after integration, yields a process noise covariant matrix
that looks as

Q(∆) =

A
3 ∆3 +B∆ A

2 ∆2 0
A
2 ∆2 A∆ 0

0 0 C∆δ2

 , (3)

where A, B and C are parameters that we will determine
later. Here tf is the new time of the filter, and ti the previous.
All three represent the covariance of their respective random
walk process after one second. Here, A corresponds to the
frequency random walk component of the oscillator noise, B



to the phase random walk component of that noise, and C
to an assumed random walk noise on the transmission delay.
The top-left 2x2 submatrix of this form is effectively the limit
τKF → 0 of Equation 18 in [8], whilst keeping NτKF , σ2

θ

τKF

and
σ2
γ

τKF
constant.

Note that we explicitly let the process noise for the delay
depend on the delay δ itself, to make changes in it relative to
the total transmission delay. For more detail on the reasoning
behind this, see subsection III-C

This matrix Q(∆) is used to update the covariance matrix
P according to

P (tf ) = F (tf − ti)P (ti)F (tf − ti)T +Q(tf − ti), (4)

A. Measurements

Comparisons of the local and remote clocks are done
through the PTP protocol [2], with delay measurements done
through the end-to-end delay mechanism. Thus, we get mea-
surements associated with the reception of PTP Sync mes-
sages, and measurements associated with the exchange of end-
to-end delay messages. For both, we define the measured offset
θM as the difference of the local timestamp on the message
with respect to the remote timestamp on the message.

We treat the sync and delay messages as providing separate
measurements, as these are sent independently and can have
different rates of occurring. For Sync messages, the difference
between the timestamps is predicted to be the sum of the delay
and the offset, giving a measurement matrix Msync = (1, 0, 1),
whilst for delay messages, the delay contributes in the opposite
direction, giving a measurement matrix Mdelay = (1, 0,−1).
We assume the noise on both measurements to be identical,
giving a measurement noise matrix R = (D) parameterized
through a single parameter, which we again will determine
later.

These determine the Kalman gain

K = PMT (MPMT +R)−1 (5)

where P is the a priori uncertainty, and M can be either Msync
or Mdelay depending on the specific measurement. The Kalman
gain in turn determines the update to the filter state

s′ = s+K(θM −Ms) (6)
P ′ = (1−KM)P (7)

where s is the a priori filter state, s′ the a posteriori estimate
of the state, and P ′ the a posteriori estimate of the uncertainty.

B. Steering

The resulting filter state after measurement is used to
determine how to steer the clock. Above a threshold of 1
millisecond, any offset is corrected immediately with a step.
Below this threshold, the clock’s frequency is adjusted such
that the resulting clock rate will fully compensate the error in
2 PTP Sync intervals, resulting in a gradual slew to the correct
time.

These adjustments to the clock are then also incorporated in
the clock state. For a step, the offset in the state is compensated

to match the new situation. Similarly, when changing the
frequency of the clock, the state’s estimate for frequency is
updated to match the new frequency after correction. We
assume that steering does not introduce additional process
noise. Since in practice, most modern computer oscillators are
not actively steered but rather steering means changing the
mapping of a counter, this only neglects a potential rounding
error. This rounding error is negligible when compared to the
oscillator and network noise and hence can be safely ignored.

III. ESTIMATING THE ERROR PARAMETERS

A. Measurement noise

The measurement noise is easiest to estimate. For this,
we consider pairs of sync and delay messages sent closely
together. For such a pair, a roundtrip time can be calculated
from the difference between the two timestamps made by the
time transmitter, and the two timestamps made by the time
receiver on those messages. By selecting for messages that
are close together, we minimise any error introduced from the
uncertainty on frequency differences between the local and
remote clock1.

This process gives an estimate of twice the transmission
delay, independent of the offset between time transmitter and
time receiver. Although we are not interested in this estimate
itself (the transmission delay is already estimated by the
Kalman filter), the variance of these estimates will be twice
the variance in the transmission delay. Hence, calculating the
standard estimator of this variance provides us with twice the
measurement variance, allowing us to dynamically determine
the value for the parameter D.

We implement this by keeping a ring buffer with the last 32
roundtrip times measured, calculating the sample variance of
this set. Only pairs of sync and delay messages that are at most
200 milliseconds apart are used to measure these roundtrip
times. During startup, we won’t have a full set of samples. To
cope with this, a fixed (large) value is used for the estimate of
the measurement noise until we have at least 4 measurements.
Then, until we have at least 8 measurements, instead of using
a proper variance we use the difference between the largest
and smallest roundtrip time instead as the estimate for D.
This provides conservative estimates during initial startup,
preventing overconfidence of the filter early on.

B. Oscillator noise

Estimating oscillator noise is quite a bit harder, since there
is no orthogonal measurement that can be directly used to
estimate its noise. However, we can try to infer information
about it from the observed differences between the predic-
tion of the filter and the actual measurements we obtain. If
these differences are repeatedly smaller than estimated by the
Kalman filter, our process noise estimate is likely low, and
vice-versa.

To actually apply this idea, we first need to make a sim-
plification, as we can only deal with a single parameter and

1Note that we can trivially compensate for any deliberate frequency error
due to steering of the local clock.



currently still have 2 (A and B) to determine. We made the
choice to set B = 0. Although not theoretically justifiable,
measurements we have done on the quartz oscillators used in
network cards such as the Intel I210 suggest this works well
in practice, as over long time intervals the terms proportional
to A appear to dominate, and on the short time intervals dis-
cretisation noise (which we take to be part of the measurement
noise) dominates (See also figure 2).

Next, we need to deal with the fact that measurement noise,
especially at smaller sync intervals, may be a significantly
larger contribution to the total measurement uncertainty than
process noise. We deal with this by running a second Kalman
filter in parallel with the primary clock steering filter. At
the start of each oscillator noise estimation cycle, this filter
is initialized from the state of the primary filter. Then it
is run in lockstep with the primary filter, but unlike the
primary filter, it only evolves due to passing time, getting
corrected for the active steering inputs, but not absorbing any
intermediate measurements. This is continued until the second
filter’s prediction uncertainty is significantly larger than both
the starting uncertainty of the filter and the measurement noise.

At this point, the uncertainty estimate of the second Kalman
filter is dominated by the value of A. This means that, if the
value of A is reasonably close to the physical properties of the
oscillator, we would expect this uncertainty to be a reasonable
predictor of the difference between the measurement and
prediction for the next incoming measurement. At this point,
we calculate the probability p of seeing a difference equal to
or smaller than the current and start a new noise estimation
cycle.

The probability p is calculated by first calculating X =
(θM−Ms)2

MPMT+D
, where M is the measurement matrix for the

measurement in question (both measurement types are used for
this). Assuming all random variables involved in the Kalman
filter to be normally distributed (the standard Kalman filter
assumption), X has a chi-square distribution with 1 degree of
freedom, allowing calculation of p with the inverse cumulative
density function of that distribution.

The above process results in a series of probabilities which
we use to judge if the current estimate is either low, correct, or
high. If we judge it to be low, then the value of A is increased
by multiplying it by 4, and if we judge it to be high, we divide
it by 4.

To judge whether we are low or high, we keep a counter
value. This value starts at 0 every time the value of A is
changed. Then, for each probability calculated, we compare
it against 1/3 and 2/3. If it is at or below 1/3, we subtract
1 from the counter. If it is at or above 2/3, we add 1 to the
counter. If it is between 1/3 and 2/3 we move the counter 1
towards zero (adding or subtracting as needed).

Through this procedure, the counter value provides an
indication of the accuracy of the currently used value of A. If
close to correct, the counter will stay close to 0. However, if
the current estimate for A is low, the counter will slowly grow
to a large positive value, and if our estimate for A is high, it
will slowly grow to a large negative value.

PPS

Network

HP Aruba 2930M

Endrun Ninja
PTP GM

PC with I210
running Statime

Basys 3 programmed
as counter

GPS

Fig. 1. Diagram showing main components of test setup used to test the filter.
Filter was implemented in Statime, run on the PC with an i210 network card.

We use this as our indicator of A needing to be changed by
checking the distance of the counter to 0 against a limit (16
in our implementation). Once the counter reaches this limit, if
it is positive the value of A is increased, and if it is negative
the value of A is decreased as described above.

In the above procedure, the choice for the probability
boundaries at 1/3 and 2/3, as well as the multiplier and
counter cutoff, were essentially arbitrary. The two probabilities
were chosen to be symmetric around 1/2 to ensure no bias
in the estimation procedure towards either low or high values,
and from experimenting we found that the chosen values work
well.

This approach still requires an initial estimate for A. How-
ever, because we dynamically update it, a relatively poor
estimate can be used, as the above estimation algorithm will
ensure it will get to within a reasonable factor of the actual
value. The only disadvantage is a longer startup period during
which the Kalman filter is not operating at peak performance.
We have found 10−16 to be a reasonable initial value for A,
which is also what was used in the evaluation below.

C. Transmission delay noise

The random walk noise for the transmission delay was
primarily incorporated to allow the filter to eventually adapt to
changes in network conditions. We chose to make this entry in
the process noise matrix explicitly proportional to the current
delay. Our motivation for doing this is that a larger transmis-
sion delay corresponds to having more cable and equipment
between the two nodes, and hence more sources which can
change characteristics, likely leading to proportionally larger
changes in the actual transmission delay over time.

In the testing below, such network conditions changes
were not present, and we haven’t evaluated the impact of
this parameter beyond ensuring it was small enough to not
meaningfully influence errors on the other two parameters.
For our testing C was chosen such as to produce a 1 percent
uncertainty on the transmission delay after one hour, assuming
a starting point of no uncertainty and no further measurements.



IV. TEST SETUP

A complete clock servo consisting of the Kalman filter,
associated noise parameter estimation, and clock steering
was implemented in the Statime PTP software2. For test-
ing, commit 3845563 was used. Statime was installed on a
computer with an Intel I210-based network card. This was
connected through an HP Aruba 2930M JL319A switch to an
Endrun Ninja PTP grandmaster clock. The Statime software
and grandmaster clock were configured using the default
parameters from the default PTP profile [2], using the end-
to-end delay mechanism and Ethernet as the transport.

For characterizing the oscillator on the network card, a
programmable pulse output (PPO) of the grandmaster clock
was connected to one of the gpio pins on the network card.
The grandmaster clock was configured to produce either one
or one thousand pulses per second on this programmable pulse
output, and the network card was configured to timestamp both
edges of these pulses as they arrived using its internal clock.

During this characterization process, the network cards
clock was not synchronized. From the resulting timestamps,
the rising edges were selected and used to calculate the Allan
deviation [9] of the oscillator for timespans between 100
milliseconds and 1000 seconds. The lower pulse rate was
used to reduce the amount of measurement data for the large
measuring time needed for calculations of the Allan deviation
for the larger time intervals.

For measuring the synchronization quality of the servo
implementation, a modified setup was used. The grandmaster
PPO was configured to produce a pulse-per-second output
aligned to the start of the second, as was the gpio pin of
the network card. Both were connected to a Basys 3 FPGA
programmed to timestamp incoming pulses against an internal
(PLL-generated) clock running at 1GHz, using the internal
deserialisation (SERDES) blocks in the FPGA. The difference
in arrival times was then used to calculate offset between the
grandmaster and the network card clock.

This approach was chosen as the FPGA was able to provide
a better resolution of 1ns as compared to that of timestamping
done by the network card, which has an 8ns resolution.
Furthermore, this makes the time difference measurement
independent of the hardware under test. The FPGA can be used
for this purpose even though its internal clock is of rather poor
quality (100ppm rated offset) since measuring offset between
the clocks involves measuring small intervals (less than five
microseconds), whereas the oscillator characterization would
have required larger measurement intervals up to half a second,
significantly increasing the impact of the frequency error of
the FPGA.

A. Error estimates

For our error analysis, we consider the pulse-per-second
signals produced by the grandmaster and network card to
represent the ground truth of their respective clocks. This
leaves only errors on the measurement by the FPGA, which

2https://github.com/pendulum-project/statime

10-9

10-8

10-7

10-6

	0.01 	0.1 	1 	10 	100 	1000

σ(
τ)

τ	(s)

I210	with	1k	PPS
I210	with	1	PPS

Meas.	noise	with	D=1.6*10-17
FRW	noise	with	A=1*10-16

FRW	noise	with	A=6.25*10-18

Fig. 2. Allan deviation of an oscillator on an Intel I210 network card. For
comparison the theoretical predictions from the noise model for measurement
and frequency random walk noise are provided in the solid lines.

is predominantly determined by the discretisation error intro-
duced by its clock rate, which is 0.5ns.

Furthermore, due to the specific way the timestamping is
implemented, there are effectively 8 sample points that each
run on their own 125MHz clock, which have a phase relation
such that there is a clock edge on precisely one of these 8
clocks for every edge of the 1GHz clock. Due to electrical
differences between these samplers the sampling point of
these may not be perfectly spaced over the 8ns interval of
the lower-speed clock. To also compensate for the fact that
the input signals are uncorrelated to the internal clock, we
pessimistically assume the further error introduced by this to
be 0.5ns.

For the characterization of the oscillator, the FPGA is
not used and instead the pulse-per-second signal is directly
timestamped by the target oscillator. This oscillator in the
network card has a clock rate of 125MHz, giving an estimate
for the discretisation error of 4ns. However, as this is part of
the intrinsic properties of the oscillator we are characterizing,
we consider this just another noise component we want to
characterize and include in the measured Allan deviation.

Systematic errors due to cable lengths and differences in
input/output path lengths on both the FPGA as well as the
grandmaster and network card are dealt with by focusing
primarily on measures of variation, ignoring average offset
between the clocks. For such measures, any systematic offsets
drop out. This holds both for variation of the offset, as well
as for more involved measures such as the Allan deviation of
the clock pulses.

The Allan deviation in figures 2 and 6 was calculated using
the overlapping estimator from [10], as standardized in [11].
Errors were determined using the noise type giving the worst
uncertainty, on a per-point basis. For the measurement using
the FPGA, the measurement errors from the FPGA where then
added.

With regards to the characterization of the clock on the
network card, it must be noted that the room which was used
for the measurements was not climate controlled. This lead to



3.9⋅10-19

1.6⋅10-18

6.3⋅10-18

2.5⋅10-17

1⋅10-16

	0 2⋅104 4⋅104 6⋅104 8⋅104 10⋅104

No
ise

	e
st
im
at
e

Time	(s)

good	network
bad	network

Fig. 3. Estimation state for the frequency random walk noise. Each of the
five areas between dashed lines corresponds to one value for the estimated
frequency noise. Position within these bins shows the counter value at
that time. The two lines correspond to good and bad network conditions
respectively.

10-8

10-6

10-4

10-2

1

	0 2⋅104 4⋅104 6⋅104 8⋅104 10⋅104

No
ise

	e
st
im

at
e	
(s
)

Time	(s)

good	network
bad	network

Fig. 4. Estimation state for the measurement error. The two lines correspond
to good and bad network conditions respectively.

slightly different climate conditions during the characterization
of it, which is visible in the overlap region of the results.
Although we were unable to quantify this, based on the
observed results (see also figure 2) this is likely the dominant
uncertainty on this measurement.

The uncontrolled temperature also likely influenced oscil-
lator stability during the testing with the servo. However, we
there consider it just part of the operating noise of the oscillator
that the servo needs to control for.

V. MEASUREMENT RESULTS

A. Clock characterization

The clock in the Intel I210 network card was characterized
as described above. From the resulting data, we calculated the
Allan deviation, the results of which are shown in figure 2.
We see two regimes: At low τ we see the resolution of the
clock dominating the oscillator error. At higher τ a frequency
wander component is the dominant error component.

-103

	0

103

104

105

106

107

	0 2⋅104 4⋅104 6⋅104 8⋅104 10⋅104

off
se
t	(
ns
)

time	(s)

bad	network
good	network

Fig. 5. Measured offset of the network card clock to the grandmaster, relative
to the average offset over the measurement period excluding startup. Note that
during the first 6 seconds, the software was not yet synchronizing the clock.
Scale is linear between −103 and 103, and logarithmic above that. The two
sets of points correspond to good and bad network conditions respectively.

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

	1 	10 	100 	1000

σ(
τ)

τ	(s)

synchronized
synchronized,	bad	network

free	running
Theoretical	limit	oscillator

Fig. 6. Allan deviation of the network card clock, as compared to the
theoretical limit given the oscillator’s 125MHz clock. The two sets of points
correspond to good and bad network conditions respectively. The free running
data given for comparison is the same as the 1 PPS data from figure 2.

B. Servo performance

To evaluate the servo performance, we ran Statime on the
machine with the I210 network card and observed it for 105

seconds. During this period, the Statime software started up,
connected to the PTP network and synchronized the network
card clock to that of the grandmaster clock. A second test of
the same duration was run with an additional consumer switch
(DLink Go-SW-5G) on the network path to worsen network
measurement error. Both tests used the same parameters.
Figures 3, 4 and 5 show the behaviour of the noise estimators
and the resulting synchronization behaviour.

Note that the behaviour of the oscillator stability estimator
consists of two variables, the actual estimate and the counter
used to modify that estimate. As the estimate itself is rather
coarse and doesn’t change much, we have combined these.
The individual bins on the y-axis, separated by the grey lines
correspond to the values of the estimate itself. Within the
bin, the height of the line is then controlled by the value of



3.9⋅10-19

1.6⋅10-18

6.3⋅10-18

2.5⋅10-17

1⋅10-16

	0 	900 	1800 	2700 	3600

No
ise

	e
st
im

at
e

Time	(s)

good	network
bad	network

Fig. 7. Estimation state for the random walk noise during startup. Each
of the five areas between dashed lines corresponds to one value for the
estimated frequency noise. Position within these bins shows the counter value
at that time. The two lines correspond to good and bad network conditions
respectively.

10-8

10-6

10-4

10-2

1

	0 	50 	100 	150 	200

No
ise

	e
st
im

at
e	
(s
)

Time	(s)

good	network
bad	network

Fig. 8. Estimation state for the measurement error during startup. The two
lines correspond to good and bad network conditions respectively.

the counter. This intuitively shows how the counter works to
indicate how confident the algorithm is in its current estimate,
with higher counter values indicating the current estimate is
likely low and vice versa.

We clearly see that the error estimation algorithms converge
quite quickly on their estimates, and remain relatively stable
afterwards. The oscillator noise estimate takes the longest, and
also shows shows a bit more variation after the initial period.
The author believes this is likely due to minor changes in
climate within the room in which the test was conducted over
the duration of the test.

The difference in oscillator noise estimate between the two
tests is likely in part also caused by poor climate control. How-
ever, a second factor that is likely to play a role here is that,
due to the larger network errors, the estimator is measuring
the oscillator noise effectively over larger time periods. This,
combined with the fact that for large measurement periods,
the oscillator noise is not quite frequency random walk noise
anymore, likely also results in a smaller estimate with worse
network conditions.

-103

	0

103

104

105

106

107

	0 	50 	100 	150 	200

off
se
t	(
ns
)

time	(s)

bad	network
good	network

Fig. 9. Measured offset of the network card clock to the grandmaster
during startup, relative to the average offset over the measurement period
excluding startup. Note that during the first 6 seconds, the software was not
yet synchronizing the clock. Scale is linear between −103 and 103, and
logarithmic above that. The two sets of points correspond to good and bad
network conditions respectively.

In terms of stability of the offset, we initially see rather
marked movement during the startup period. This then rapidly
stabilizes, and remains mostly within fixed bands for the
remainder of the test. The difference in network conditions
is clearly visible in the stability of the synchronization, but
is not as big as would perhaps naively have been expected
based on the difference in network error. This is due to the
filter correctly recognizing it should average more between
subsequent measurements.

This better-than-naively expected performance is also visi-
ble in the more quantitative analysis in figure 6. Here, we see
that the stability only worsens by about a factor of 10, despite
the network error increasing by almost a factor 50.

C. Startup behaviour

Let us now zoom in on the servo’s behaviour during startup,
shown in more detail in figures 7, 8 and 9. First, consistent
with the parameters from the chosen PTP profile, it took the
implementation about 6 seconds to select the grandmaster
clock as its time source. Upon the first measurements imme-
diately afterwards, we see the software synchronizing roughly
to the clock, reducing synchronization error to several hundred
microseconds.

At this point, we still use a very conservative estimate for
the transmission delay, which has the effect of both inhibiting
finer synchronization of the clock as well as proper learning
of the oscillator noise. As the software gets a more accurate
picture of the variations in transmission delay, we see marked
improvement in the synchronization quality around the 100
second mark.

Note that naively, one would expect the variance estimate al-
ready to be good after 8 round trip time measurements, which
is expected to be collected in about 20 seconds. However, the
first few estimates happen during a period where the clock
frequency is still rather poorly measured, resulting in the first
round trip time estimates being rather poor as well. Further



time is needed to flush these out of the ring buffer, which
happens after 32 more measurements. This is expected to take
somewhere around 80 seconds longer, and matches what is
observed in figure 8.

Up to this point in the startup process, there is no real
difference in startup speed between the two types of network
conditions tested. This changes now as the clock quality
estimation starts to be able to learn how good the clock
crystal is. For the good network conditions, this clock quality
estimation reaches a stable point at around the 10 minute
mark. However, the larger network errors significantly slow
the feedback available to this estimator in the bad network
case, resulting in significantly slower convergence.

VI. CONCLUSIONS AND FURTHER WORK

From the previous section we can see that both the mea-
surement error and clock stability estimators function properly.
They converge reasonably quickly towards estimates of the
actual amount of noise, and stay stably at those estimates
afterwards. The resulting clock servo then also manages to
steer the clock to a degree that matches expectations given
the network conditions and the resolution of the network card
clock involved.

The resulting servo has no further parameters that depend
on physical properties of the equipment in use. This leads
us to believe it will likely perform well on a wide variety
of underlying hardware with its default parameters. This
property makes it particularly well suited for a general purpose
implementation of PTP, as the user of the implementation
needs no specialized knowledge to setup the software, whilst
still getting a servo that is operating close to optimally for
their hardware.

A limitation in our testing is that practical constraints only
allowed us to test with a single type of oscillator. It would
be interesting to repeat the measurement portion of this work
on more hardware setups to see if any interesting variations
surface. The author has been able to do this to a degree as
part of the development work on Statime, but not in a fully
controlled environment.

Of note is that the servo does require some amount of time
at startup to get to a properly synchronized clock. Based on
the startup behaviour observed, this seems to be dominated in
large part by the estimate of the measurement error. It would
be interesting whether there can be found alternative methods
for the early estimation of the measurement error that are less
conservative, as that could significantly speed up the startup
process.

A second direction of improvement could be the estimation
of the oscillator stability. The current method results in an
estimate with a rather coarse resolution. It would be interesting
to see if there are approaches that can provide a more direct
estimate of the oscillator stability, rather than an indication of
whether the current estimate is too high or too low. Such a
direct estimate could both conceivably converge a bit faster as
well as provide a more accurate estimate, further improving
servo performance.

On the theoretical front, it would be interesting to consider
more elaborate noise models. The model currently used does
not include flicker noise components, and we do not dynam-
ically infer a magnitude for the phase random walk noise.
Including and dynamically estimating these noise components
could further improve the quality of estimates.

VII. ACKNOWLEDGEMENTS

The author would like to thank Dr. B. Stienen, M. School-
derman, M. Peeters, and R. Nijveld for discussions that made
this work possible. Thanks also to the Sovereign Tech Fund
for the funding which made Statime and part of the research
for this paper possible.

REFERENCES

[1] O. Obleukhov and A. Byagowi. How precision time protocol is being
deployed at Meta. [Online]. Available: https://engineering.fb.com/2022/
11/21/production-engineering/precision-time-protocol-at-meta/

[2] “IEEE standard for a precision clock synchronization protocol for
networked measurement and control systems,” IEEE Std 1588-2019
(Revision of IEEE Std 1588-2008), pp. 1–499, 2020.

[3] R. Exel and F. Ring, “Improved clock synchronization accuracy through
optimized servo parametrization,” in 2013 IEEE International Sympo-
sium on Precision Clock Synchronization for Measurement, Control and
Communication (ISPCS) Proceedings, 2013, pp. 65–70.

[4] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 03
1960. [Online]. Available: https://doi.org/10.1115/1.3662552

[5] C. A. Greenhall, “Forming stable timescales from the Jones–Tryon
Kalman filter,” Metrologia, vol. 40, no. 3, p. S335, jun 2003. [Online].
Available: https://dx.doi.org/10.1088/0026-1394/40/3/313

[6] A. Bletsas, “Evaluation of Kalman filtering for network time keeping,”
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Con-
trol, vol. 52, no. 9, pp. 1452–1460, 2005.

[7] B. R. Hamilton, X. Ma, Q. Zhao, and J. Xu, “ACES: adaptive clock
estimation and synchronization using Kalman filtering,” in Proceedings
of the 14th ACM International Conference on Mobile Computing and
Networking, ser. MobiCom ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 152–162. [Online]. Available:
https://doi.org/10.1145/1409944.1409963

[8] G. Giorgi, “An event-based Kalman filter for clock synchronization,”
IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 2,
pp. 449–457, 2015.

[9] D. Allan, “Statistics of atomic frequency standards,” Proceedings of the
IEEE, vol. 54, no. 2, pp. 221–230, 1966.

[10] D. Howe, D. Allan, and J. Barnes, “Properties of signal sources
and measurement methods,” in Thirty Fifth Annual Frequency Control
Symposium, 1981, pp. 669–716.

[11] “IEEE standard definitions of physical quantities for fundamental fre-
quency and time metrology-random instabilities,” IEEE Std 1139-1999,
pp. 1–40, 1999.


