

RG

From Pwn2Own Vancouver 2022 - Team Synacktiv vs Tesla Model 3

Rust could have prevented this.

Not joking. 70% of most severe security vulnerabilities could be prevented.

kudos to Tesla and Synacktiv, they do awesome engineering!

Many industries are more and more driven by software (or even relying their entire business on it).

Too bad, more software means more bugs and vulnerabilities.

Rust quality & reliability properties seem like a great idea for carmakers.

But saying « it's better » is not enough to trigger changes in large corporations, isn't it?

Cybersecurity measures in cars strictly limits what we can do in the car architecture, and make them more expensive and complex.

Example on how Rust help us save dozen millions€.

Fear of vulnerabilities make the cars more complex and expensive

Rules before 2023:

simple protocols

→ allowed through full proxy (packet inspection & reconstruction of all OSI stacks, payloads checking, Access Control Lists to OSI L7)

complex protocols

→ forbidden

Fear of vulnerabilities make the cars more complex and expensive

actually costs millions per each protocol to support

Rules before 2023:

simple protocols

→ allowed through full proxy (packet inspection & reconstruction of all OSI stacks, payloads checking, Access Control Lists to OSI L7)

complex protocols

→ forbidden

One example of system impact:

fear of vulnerabilities make the cars more complex and expensive

- low flexibility (developer frustration)
- cost & delay impact of designing a proxy
- performance impact wasting MIPS and Watts
- sometimes break E2E security properties (proxy acts as SPOF/MiTM)
- vulnerabilities are still possible!

Before 2023:

simple protocols

→ allowed through full proxy (packet inspection & reconstruction of all OSI stacks, payloads checking, Access Control Lists to OSI L7)

complex protocols

→ forbidden

Simplifying architectures through memory-safety guarantees

Renault SDV rules (MY2025):

unsafe protocols

→ allowed through full proxy (packet inspection & reconstruction of all

OSI stacks, payloads checking, Access Control Lists to OSI L7)

memory-safe protocols

- → allowed without proxy if:
- follows safe Rust coding rules
- protocol ensures E2E OSI L7 authentication & anti-replay
- apps using the protocol are also memory-safe

Our strategy:

If you use Rust, you're allowed to do more things than before, at lower cost, with more powerful tools, and reduce technical debt.

We're not the only ones \o/

« [Google] Chrome was able to move its QR code generator out of a sandbox by adopting a new memory-safe library written in Rust [...] »

Consequence:

We made Rust mandatory for some SW.

Then, it naturally propagates at interfaces given its powerful capabilities & ecosystem.

Developers enjoy it, time to market & quality improves, control increases over the SW (sBOM)...

Better up-skilling?

A good C/C++ developer needs 10+ years of experience and will still make memory-management mistakes.

A newbie Rust developer will be catched by the compiler before making the same mistakes.

Training towards Rust is also working really great.

Do we use it?

- At Ampere, we think distributed security, by improving software development guarantees, is the way forward.
- We use Rust as part of our development processes, and already use it in vehicles that will be shipped 2026+.
 Proofs of Concepts ongoing for safety-critical Rust components.
- Rust is a strong requirement in the AAOS-SDV OS we're developing with Google (not only the infotainment part!).
- On-going strategy to have Rust "by-default" for new developments.

Rust is **not only about security**, but also **improves quality** by significant factors, in areas where **performance or reliability** are critical.

Go, Javascript, Kotlin, C++, asm, Java,.. still make sense for other areas!

And of course, Rust makes 100% sense when dealing with untrusted data or exposed services.

Experiencing a switch towards Rust

- Finding a « killer » area where Rust could clearly be a disruptive change helps convincing large inertial entities. Saying « it's better » is not sufficient.
- Covering the « business security-critical » use-cases first, and closely controlling the boundaries towards non-Rust.
 Rewrite everything is not the strategy! We live with legacy.
- We observed up to 20% faster time-to-market in our internal developments (latency-critical networking code), and overall cost reduction throughout the dev cycle.
- Rust will naturally propagate, thanks to the areas where it's mandatory, and the increase in incentives ('Rust-by-default').

The Big Picture of where Rust helps

SW quality & performance	type model of Rust, compiler properties, as-per C++ performance level	
Time to Market / Efficiency	Tooling, ecosystem, less bugs at compile-time Improved time-to-market	
Security vulnerabilities	Rust compiler properties, 50-70% less vulnerabilities worst ones nearly eliminated	
Supply chain security	Better control over supply chain (Cargo tools) Better viewer over SBOM	
Regulations Certification	Reduces cost of Safety Rust language properties certifications / Security audits formal proofing	/
Engineers satisfaction	Modern tools on-par with the developer ecosystem Better engineer satisfaction, less tooling friction, leading-edge technologies available	SS
Technical debt	Crates ecosystem, cargo tooling Helps reduce technical debt	

better organization efficiency

improved market penetration

improved career opportunities

decreased operating expenses

- Rust is the low-hanging fruit for cheaper and secure automotive solutions, which improves time-to-market and overall satisfaction.
- Ampere is demonstrating its effectiveness and our roadmaps will spread it more and more ('Rust by default').
- The regulated industries needs to embrace this opportunity, and Ampere will continue to encourage its partners.
- Rust does not solve everything! Security certifications, sandboxing, defense-in-depth, great cryptography, logical bugs testing, security-by-design, KISS are complementary.

@fredericameye

Thank you frederic.ameye@renault.com

Focus on security

Focus on security

Focus on security

What's next?

- Defining Rust supply chain attacks mitigations
 - This is a trending topic at the Rust Foundation
 - Ampere is also defining a few rules
- Starting using Rust for safety-critical components (ADAS)
 - Less for cyber properties, but for better code behavior
 - Better defining formal guarantees on memory safety
 - How to link to 'what we always did'? Eg. MISRA rules...
- Pushing memory-safety towards suppliers:
 - hypervisors (& mostly their paravirtualized drivers)
 - low-level SoC firmware vendors (accelerators, BootROMs)
 - exposed components (eg. FOTA, crypto parsing, embedded HSMs, switches FW)