
What’s Rust all about?

Presentation by Dion Dokter

1

Who am I?

● Dion Dokter

● Bachelor’s Applied Computer Science at Saxion Enschede

● (Embedded) Rust since 2019

● Joined TG in late-2021 as embedded tech lead

● @Geoxion on Twitter, @diondokter on Mastodon

● LoRaWAN IoT

● UWB Real Time Localization System

● Async IoT with LTE

Introduction

2

Topics:

● Rust language

● Rust, FFI & C

What to expect today?

3

The language

4

● Announced in 2010 by Mozilla & creator Graydon Hoare

● Aimed to replace C & C++ in Firefox

○ Initially with GC & green threads

● 1.0 version released in 2015

● Major edition upgrade in 2018 & 2021

○ Stable: Old code still compiles

● Now a foundation

● The project is on github

○ 74K stars

○ 4K+ contributors

Origins

5

According to the website rust-lang.org:

● Performance -> Systems software

○ No runtime

○ No garbage collector

● Reliability -> Safe software

○ Memory safety

○ Thread safety

● Productivity -> Happy developers

○ Friendly compiler

○ Tooling & docs

Why Rust?

6

Technical overview

● Compiled language (machine code, not bytecode)

● Strongly statically typed

○ Elaborate type system

● Imperative with functional aspects

● No GC or runtime

7

● No segfaults*

● No buffer overflows*

● No null pointers*

● No data races*

● Powerful type system

● Unified build system

● Dependency management

Compared to C & C++

8* In safe Rust (which is 99% of Rust)

Compared to C & C++

9

● Compile times

● Learning curve

● No certifications yet

○ Ferrocene

○ AUTOSAR

● Library maturity

Why not Rust?

10

C origins

Curly bracket

style

ML & Haskell

infused

Expression

oriented

Syntax
fn main() {

println!("Hello, World!");
}

fn is_prime(n: u32) -> bool {
let limit = (n as f32).sqrt() as u32;

for i in 2..=limit {
if n % i == 0 {

return false;
}

}

true
}

11

C origins

Curly bracket

style

ML & Haskell

infused

Expression

oriented

Syntax

fn is_prime(n: u32) -> bool {
let limit = (n as f32).sqrt() as u32;

(2..=limit).map(|i| n % i).all(|p| p != 0)
}

Generates (almost) the same assembly!

12

All references (pointers) are checked at compile time:

● Every value has an owner, the variable

● Access can be borrowed by other variables

○ At most 1 mutable borrow OR infinite immutable borrows

● Ownership can be transferred by moving

● Owner out of scope = value dropped

○ Similar to C++ RAII

○ No GC required

Ownership, moving & borrowing

13

let x = Vec::<u8>::new();

let y = x;

drop(x);

Good compiler feedback

14

let x = Vec::<u8>::new();

use_vec(&mut x);

fn use_vec(x: &mut Vec<u8>) {}

Good compiler feedback

15

let mut x = Vec::<u8>::new();

let y = &mut x;

let z = &mut x;

drop(y);

Good compiler feedback

16

● Structs implement traits

● Traits are like interfaces in Java

● Generic bounds using traits (not unlike C++ concepts)

● Monomorphization (not unlike C++ templates)

● No classic OOP, so traits are the main abstraction mechanic

Traits & generics

17

Display trait

Anything that

implements

Display can be
formatted

Traits &
generics

18

Use #[derive()]

to automatically

implement traits

Serde is really
cool btw

Traits &
generics

19

Generic type is bounded by traits

Generic functions

20

Enum variants

can contain

data.

Enums can

implement

functions &
traits.

Pattern

matching on

enums and
much more.

Enums

21

Increasingly popular

22https://tjpalmer.github.io/languish/

https://tjpalmer.github.io/languish/

7 years in a row,

Rust is the most

loved language.

https://survey.stack
overflow.co/2022/#

technology-most-

loved-dreaded-

and-wanted

Very well liked

23

https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/

Lots of big players are investing

24https://foundation.rust-lang.org/members/

https://foundation.rust-lang.org/members/

Extra tools

25

Cargo:

● Build system

● Package manager

Tools

26

Cargo:

● Build system

● Package manager

Tools

27

[package]
name = "sequential-storage"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at
https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]
embedded-storage = "0.3.0"

Cargo:

● Build system

● Package manager

Tools

28

Built-in unit

testing

Tools

29

Clippy:

● Prevent common mistakes

● Small efficiency improvements

Tools

30

Docs:

Markdown

Generated to

html (like

doxygen)

docs.rs

Tools

31

Docs:

Markdown

Generated to

html (like

doxygen)

docs.rs

Tools

32

● rustfmt: Code formatting

● Criterion: Microbenchmarking

● Bindings

○ rust-bindgen

○ cxx

● Any text editor using LSP (for Rust Analyzer plugin)

● Any IntelliJ IDE (for IntelliJ Rust plugin)

Many more tools

33

FFI & C

34

We cannot rewrite everything in Rust.

Sometimes we want to use a C library.

Why FFI

35

We can call C function. We need to define it and link with the C binary.

https://doc.rust-lang.org/nomicon/ffi.html

FFI

36

https://doc.rust-lang.org/nomicon/ffi.html

We can

generate the

functions using
bindgen

Let’s automate

37

Output the file

and let the

compiler link
with the C

binary

Let’s automate

38

https://github.com/nrf-rs/nrfxlib-sys

Now we can use it

39

https://github.com/nrf-rs/nrfxlib-sys

Use the low

level C function

to create a
proper Rust

wrapper

High level
wrapper

40

Easy to use,

hard to misuse

Very nice
interface

41

Now we can use it

42

Castellastraat 26, 6512 EX Nijmegen

info@tweedegolf.com

024 3010 484

43

mailto:info@tweedegolf.com

