10 C, OR
NOT T0O C

HTSC, 8 Nov 2022

MIDNIGHT BLUE

a MIFARE CLASSIC+
SYStemS & e [hreat Modeling Broke MIFARE CLASSIC+
\iSIIatslE=]ollllaYA \/ulnerability Research
. . . Attack integrated in industry-
AnalyS|S 'RGVGFSG Englneerlng standard Proxmark tool
> BLACKBERRY QNX
. :'::BlaCkBeffy Multiple kernel Odays
Canahilit e Attack Scenario Development ———————
p Vy .RTO / BAS Development Used in ICS automotive,
D@VG‘ODWGHJE . . avionics, defense
e [raining
\ SSD ENCRYPTION
Broke multiple popular SEDs
/
) . : Impacted Bitlocker defaults
Defensive e Architecture Reviews
Design e SDLC Consultancy —~— CAR IMMORBILIZERS
Broke Peugeot, Opel, Fiat
\

Co-developed world's fastest

attack against Hitag2 cipher

(I\/IIDNIGHT BLUE

PROJECT MEMORIA

S 14 FORESCOUT
TCP/IP stacks analyzed () VEDERE LABS

| — |

125 500+ ° 3 pillion

impacted vendors vulnerable devices

https://www.forescout.com/research-labs/project-memoria/ (MMMMMMMMMMMM

AFFECTED STACKS

NicheStack HCC Embedded NicheTask / ChronOS
SEGGER embQOS (emNET)

Nucleus NET Siemens Nucleus

Treck Treck / Xilinx Many

IPnet Wind River VxWorks

NetX Microsoft ThreadX

-reeBSD -reeBSD -reeBSD

ulP SICS -reeRTOS, Contiki
PicoTCP Altran selL4, TRENTOS
uC/TCP-IP Micrium UC/OS-II, uC/OS-I1l, Cesium
MPLAB NET Microchip FreeRTOS, Bare metal
NDKTCPIP Texas Instruments TI-RTOS

CycloneTCP Oryx FreeRTOS, CMSIS-RTOS
Nut/Net -thernut NutOS

-NET -reescale -reeRTOS, CMSIS-RTOS

RITUs

EXAMPLE AFFECTED PRODUCTS
Gas Turbines

e

Y¥e 2 ve e 1ee

‘e

INnfusion Pumps

Switches Printers
A%F’gc\mn

(I\/IIDNIGHT BLUE

ATTACK SURFACE

4 I

Fthernet

RESEARCH METHODOLOGY

y

YERIVE]

y .
Variant Analysis

Hunting

FUzZzINg

FUZZING

Target Characterization

N

Input Determination

N

Target Instrumentation

Test Harness Fxception Handling Coverage Reporting

A4

Mutation Generation

Crash Analysis Deduplication Triage

Cleanup Stateful Guidance Coverage Guidance

(I\/IIDNIGHT BLUE

LIBFUZZER

« Part of LLVM compiler infrastructure
¢ \/\/ h |te - b OX - New Inputs
« Coverage-guided

e Mutational

» Original corpus from legit IP traffic pisiea s %?.TEL?SJS
Callbacks

e \Write test harness around functions :

e

Fuzz N Library ‘ |
« Coverage challenges when used out-of-the-box largery) »-c:l Sy o

.-“-.,___

» Stateful fuzzing

e Checksums

extern "C" int LLVMFuzzerTestOneInput(const uint8 t *Data, size t Size) {
DoSomethingWithData(Data, Size);

return 0;

(I\/IIDNIGHT BLUE

VARIANT HUNTING

* Wheel gets reinvented every minute

» Dozens of TCP/IP stacks, JSON parsers, DNS clients, etc. out there

 [f you invent the wheel, you will run into wheel-shaped problems

» People solving similar problems under similar conditions tend to produce similar

bugs

o IDEA: If we see a bunch of vulnerabilities in one implementation,

why Nnot (automatically) hunt for the same mistakes in others

(I\/IIDNIGHT BLUE

ANTI-PATTERNS

 Generalize bundles of vulnerabilities with similar root-causes into classes of anti-patterns

¢ AntiPatern _________ Swdy

Absence of bounds checks AMNESIA:33

Misinterpretation of RFCs AMNESIA:33

Shotgun parsing AMNESIA:33

IPv6 extension headers/options AMNESIA:33
Predictable ISN generation NUMBER:JACK

Lack of TXID validation, insufficiently random TXID and source
UDP port

Lack of domain name character validation NAME:WRECK

Lack of label and name lengths validation NAME:WRECK

Lack of NULL-termination validation NAME:WRECK

10 Lack of record count fields validation NAME:WRECK

NAME:WRECK

11 Lack of domain name compression pointer and offset validation NAME:WRECK

(I\/IIDNIGHT BLUE

JOERN

» Derive Code Property Graph (CPG) from source-code

« Merge Abstract Syntax Tree (AST), Code Flow Graph (CFG), Program Depenc

ence Graph (DPQ)

« Captures syntactic structure, code flow, and data dependencies in one Grap

 Formalize anti-patterns as CPG gueries in Scala

N DB

« Note: coverage & target specific finetuning make this more suitable for CI/CD integration than

one-off vulnerability research

D, C —p AST edge

\ \
EXIT

-

Attacker Controlled

Application

Semantic Code
Property Graph

Source JL ,-Ll- 2

Vulnerable
Sink
Vulnerable Flow Discovery
Using Ocular

(I\/IIDNIGHT BLUE

VULNERABILITY TYPES

* Mostly violations of memory safety

» Results in DoS/ RCE /infoleak
 Depending on platform & config

» Absence of exploit mitigations
« No DEP/ASLR/Canaries (lack of MMU/RTOS)

« Some vulns In certain |IP stack layers

exploitable without any open ports ...

R N

0 5 10 15 45

Percentages of vulnerability types

Amnesia33 Ripple20 Urgent/11 Other

(I\/IIDNIGHT BLUE

PATCHING

* \Who is responsible for patches?

« Open-source maintainer? White label vendor? OEM?

» Disclosed to CERT/CC+ICS-CERT, help from Github » no official patches ulP, Contiki, PicoTCP

« Many complications
» Not all systems have OTA fw updates (e.g. manual, serial ports, etc.)
 Rare maintenance windows in critical infra

 Highly complicated supply chains (lack of SBOMSs, forks, component copy-paste, etc.)

 Many devices remain vulnerable for loooong time

THE LIMITS OF CERTIFICATION

SVV-3: Vulnerability testing

)) f) 9.4.1 Requirement
o

M d ny SeCU rlty Certs req Ulire rtuzZz ng A process shall be employed for performing tests that focus on identifying and characterizing
potential security vulnerabilities in the product. Known vulnerability testing shall be based

° /i upon, at a minimum, recent contents of an established, industry-recognized, public source for
| EC 62443 4 -l known vulnerabilities. Testing shall include:

. a) abuse case or malformed or unexpected input testing focused on uncovering security
° G E ACh | | |eS ACC issues. This shall include manual or automated abuse case testing and specialized types

of abuse case testing on all external interfaces and protocols for which tools exist.
Examples include fuzz testing and network traffic load testing and capacity testing;

Achilles Grammars
e Yet certified ® roducts turn out to still syffer Achilles Grammars test for protocol boundary conditions in the device communications.

They systematically iterate over each field and combinations of fields to produce repeatable,

from S h 3 | |OV\/ b Ugs N cCOoMmMmMon stac l'(S quantifiable tests of the common types of implementation errors.

Achilles Grammars send invalid, malformed or unexpected packets to the Device Under
Test (DUT) to test for vulnerabilities in specific layers of the protocol stack.

. Need QA guarantees on fuzz results Product (ACC SL2) TCP/IP stack vulns
Nucleus RTOS NUCLEUS:13

* INn-depth methodology description NAME:WRECK

« Code coverage figures N U ‘Of W= W B-Y \/xWorks 7 RTOS Urgent/11
NAME:WRECK

Siemens SENTRON PAC4200 Amnesia:33
Schneider ATV6000 Ripple20

I

[
|

Il

M
I

I

1l

Rockwell ControllLogix Urgent/11
NAME:WRECK

i

"'l”‘
l

TOWARDS HIGH-ASSURANCE ENGINEERING

“Testing can be used to show the presence of bugs, but never their absence!”

—dsger W.

DIjKstra

(I\/IIDNIGHT BLUE

ADDRESSING THE ROOT CAUSE

o C(++) Is unsafe language -» easy to shoot yourself in foot with memory corruption!

« Memory Safety: Only access memory locations they are permitted to access by scope

» Type Safety: Well-typed programs can never result in type errors

= —

Domain name

Domain type

Domain class

42
42
43
43
43
43
43
(%1%}
f
3e

42
42
43
43
43
43
43
7cC
7f
3f

42
42
43
43
43
43
43
5%}
51%)
01

Resource data length

Label length

42
42
43
43
43
43
43
00
00
00

42
42
43
43
43
43
43
00
1%)
00

42
42
43
43
43
43
43
5%}
51%)
5%}

bo
43
43
43
43
43
00
00
58

42
43
43
43
43
43
00
oe
o

5]

&5
43
43
43
44
00
1%

-

Overflow data

45
43
43
43
00
00
00

v 55

Fake terminating

NULL

&5
43
43
43
5]%]
fe
5]%]
95

45
43

43 ¢

43
00
£f
00
bd

BBBBBBB

CVE-2020-25111

i

Resource data £

B BBBBBBBB
- CCCCCCCC
C CCCCCccC
C CCCCCccC
C CCCCCccC
C CCCCCCCC

static uintl6 t ScanName(uint8 t *

1

uintg t len;
uintlé_t rc;
uint8 t *np,

rc

np
len

ler'llp

E

mﬂpp] {
free(*npp);

*npp = ©;

((*cp & BxCB) == OxCO)

<y

strien((ch
*npp = mal

= m[p++;

(len) {
(len-
:l:rllp.l..l. =
({len =

*Np++ =

= ﬂ;

rc,

ar *) cp) + 1;
loc(re);

-)
mcp++;
:-:Cp_l__l_] = [:]]

cp, uint8 t ** npp)

Attackers explicitly
control the allocation
of *npp

Attackers explicitly
control the number of
bytes to be written
into *npp (len)

(I\/IIDNIGHT BLUE

C(++) CONTINUES TO DOMINATE EMBEDDED

mC mC++ mOther

* 2017 Barr Group Embedded Systems Safety & Security Survey (llllllllllll

BUT RUST IS GAINING MOMENTUM

Microsoft Azure CTO Wants to Replace C ,,,..- :
and C++ With Rust '

Google shows off KataOS, a secure

operating system written in Rust

Protocol Libraries

Our protocol libraries are written in safe Rust and compile to native code.
They offer the raw performance of C/C++ combined with state-of-the-
art memory and thread safety guarantees. Model-generated bindings
are available for C/C++, Java, and NET.

RUST & MEMORY SAFETY

« Rust Is a high-performance, system programming oriented, safe l[anguage

 Guarantees safety through data ownership semantics

» All resources (e.g. variables) have clear owner
« Others can borrow from owner

» Owner cannot free/mutate resource while being borrowed

« Guarantees memory safety at compile-time, no costly runtime or garbage collector

Our analysis result shows that Rust can keep its promise that all memory-safety

bugs require unsafe code, and many memory-safety bugs in our dataset are mild soundness issues that only
leave a possibility to write memory-safety bugs without unsafe code.

« NOTE: Rust helps you against memory corruption
» Not with weak crypto, SCA/FI, logic bugs, cmd injection, etc.

Xu et al. - Memory-Safety Challenge Considered Solved? An In-Depth Study with All Rust CVEs (,\/”D,\“G HT BLUE

RUST MEMORY SAFETY MODEL

Runtime Memory Safety Notional Memory Layout Notional Rust Application

Kernelspace

Stack Probes
(x86/x64)

Arguments, Environment Variables C Libraries
(CFFI)

Unsafe API
Wrapper Checks
(ex: Interior Mut))

Stack Memory

Safe Rust
App

W

Bound Checks

Rust
Libraries

Unsafe
Rust

Variables
Initialized
Before Use

Only Valid
References

Heap Memory

Operating System

No Dangling Uninitialized Data (BSS)
Pointers I

Initialized Data

No Data Races Hardware

(Subject to Physical Attacks)

(I\/IIDNIGHT BLUE

UNSAFE RUST

 Guarantees are very broad but not (yet) universal

HERE BE DRAGONS

» unsafe keyword drops some checks for limited scope, allows Undefined Behavior (UB)
* \WWhy unsafe?
« Some code hard to implement under safe rules (e.g. MMIO, certain low-level HW

INnteraction, doubly-linked lists, etc.)

 Foreign Function Interface (FFI) to interact with

C libraries (especially for large proprietary codebases, legacy protocol stacks, binblobs with lost source)

2. Underlying OS (since there's no fat runtime to do that for us)

» Parts of Rust standard library are marked unsafe

(I\/IIDNIGHT BLUE

FURTHER GOTCHAS

Rare compiler bugs affecting soundness could violate safety

Memory leaks & panic handler invocation can still happen

« Typically results in DoS (worrying in cyber-physical systems)

« Explicit error handling can cover this

INnteger overflow checks depend on compiler settings

* Debug - panic, Release » wraparound

Heavily constrained #![no_std] target systems tend to lack MPUs, NX bit, etc.

« Only compile-time memory safety, Nno run-time guarantees

Regardless, attack surface reduced by orders of magnitude compared to C(++)

(I\/IIDNIGHT BLUE

HARDENING RUST CODEBASES

[T full codelase can't be in Rust » high-risk targets as hardened Rust components

(e.g. protocol stacks, TEE, etc))

o [teratively reduce C(++) footprint in codebase + focus security attention on those parts

 Hardening, fuzzing, audits, etc.

» Cover unsafe Rust & gotchas by integrating fuzzing into CI/CD pipeline

» Cargo-fuzz (libFuzzer wrapper)

« CONCLUSION
 Rust massively reduces memory corruption attack surface by tackling root cause
 Thus reducing cost of vulnerability mgmt. programs

 While remaining performant

(I\/IIDNIGHT BLUE

GET IN TOUCH wee CONTACT
WITH US www. midnightblue.ni sales@midnightblue.nl

(2 ()

(I\/IIDNIGHT BLUE

