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Presentation by Dion Dokter
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Who am I?

● Dion Dokter

● Bachelor’s Applied Computer Science at Saxion Enschede

● (Embedded) Rust since 2019

● Joined TG in late-2021

● @Geoxion on Twitter

● LoRaWAN IoT

● UWB Real Time Localization System

● Async IoT with LTE

Introduction
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Topics:

● Rust language

● Rust embedded

● Rust, FFI & C

What to expect today?
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The language
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● Announced in 2010 by Mozilla & creator Graydon Hoare

● Aimed to replace C & C++ in Firefox

○ Initially with GC & green threads

● 1.0 version released in 2015

● Major edition upgrade in 2018 & 2021

○ Stable: Old code still compiles

● Now a foundation

● The project is on github

○ 74K stars

○ 4K+ contributors

Origins
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According to the website rust-lang.org:

● Performance -> Systems software

○ No runtime

○ No garbage collector

● Reliability -> Safe software

○ Memory safety

○ Thread safety

● Productivity -> Happy developers

○ Friendly compiler

○ Tooling & docs

Why Rust?
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Technical overview

● Compiled language (machine code, not bytecode)

● Strongly statically typed

○ Elaborate type system

● Imperative with functional aspects

● No GC or runtime
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● No segfaults*

● No buffer overflows*

● No null pointers*

● No data races*

● Powerful type system

● Unified build system

● Dependency management

Compared to C & C++

8* In safe Rust (which is 99% of Rust)



Compared to C & C++
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● Compile times

● Learning curve

● No certifications yet

○ Ferrocene

○ AUTOSAR

● Library maturity

Why not Rust?
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C origins

Curly bracket 

style

ML & Haskell 

infused

Expression 

oriented

Syntax
fn main() {

println!("Hello, World!");
}

fn is_prime(n: u32) -> bool {
let limit = (n as f32).sqrt() as u32;

for i in 2..=limit {
if n % i == 0 {

return false;
}

}

true
}
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C origins

Curly bracket 

style

ML & Haskell 

infused

Expression 

oriented

Syntax

fn is_prime(n: u32) -> bool {
let limit = (n as f32).sqrt() as u32;

(2..=limit).map(|i| n % i).all(|p| p != 0)
}

Generates (almost) the same assembly!
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All references (pointers) are checked at compile time:

● Every value has an owner, the variable

● Access can be borrowed by other variables

○ At most 1 mutable borrow OR infinite immutable borrows

● Ownership can be transferred by moving

● Owner out of scope = value dropped

○ Similar to C++ RAII

○ No GC required

Ownership, moving & borrowing
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let x = Vec::<u8>::new();

let y = x;

drop(x);

Good compiler feedback
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let mut x = Vec::<u8>::new();

let y = &mut x;

let z = &mut x;

drop(y);

Good compiler feedback
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● Structs implement traits

● Traits are like interfaces in Java

● Generic bounds using traits (not unlike C++ concepts)

● Monomorphization (not unlike C++ templates)

● No classic OOP, so traits are the main abstraction mechanic

Traits & generics
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Use #[derive()] 

to automatically 

implement traits

Serde is really 

cool btw

Traits & 
generics
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Enum variants 

can contain 

data.

Enums can 

implement 

functions & 

traits.

Pattern 

matching on 

enums and 

much more.

Enums
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Increasingly popular

19https://tjpalmer.github.io/languish/

https://tjpalmer.github.io/languish/


7 years in a row, 

Rust is the most 

loved language.

https://survey.stack

overflow.co/2022/#

technology-most-

loved-dreaded-

and-wanted

Very well liked
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https://survey.stackoverflow.co/2022/#technology-most-loved-dreaded-and-wanted


Lots of big players are investing

21https://foundation.rust-lang.org/members/

https://foundation.rust-lang.org/members/


Embedded
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Rust embedded ecosystem
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cargo, crates, rustccore, alloc, std probe-rs & more



Peripheral Access Crates
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C

Rust



Overview
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● Many open source HALs

● Vendor HAL for RiscV ESP chips

● Also async support (embassy)

● Implementation of high level chip features

● Built on top of PACs

Device HALs
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Device HALs
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Overview
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`Embedded-hal` is the glue of the entire ecosystem

● Contains abstractions for many common operations

● SPI example trait:

Cooperation
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FYI: SPI (Serial Peripheral Interface) is a common communication 

protocol to talk with other devices



Overview
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Traits + generics

● Reuse traits from 

embedded-hal

● Efficient

● Convenient

Frustrating in C

• No standards

• No abstractions

• Function pointers?

• Extern functions?

• Fork & implement in 

library?

Device drivers
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Overview
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Bare metal + 
interrupts

Runtimes
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Async

(blog posts)

RTIC RTOS



● Program low level devices in a

high level language

○ More productive

○ Fewer bugs

○ We can still do the 

same cool things

So why embedded Rust?
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Extra tools
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Built-in unit 

testing

Tools
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Clippy:

● Prevent common mistakes

● Small efficiency improvements

Tools
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Docs:

Markdown

Generated to 

html (like 

doxygen)

docs.rs

Tools
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Docs:

Markdown

Generated to 

html (like 

doxygen)

docs.rs

Tools
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● Cargo: Package manager & build system

● rustfmt: Code formatting

● Knurling-rs (embedded)

○ Probe-run

○ Defmt

● Criterion: Microbenchmarking

● Bindings

○ rust-bindgen

○ cxx

● Any text editor using LSP (for Rust Analyzer plugin)

● Any IntelliJ IDE (for IntelliJ Rust plugin)

Many more tools
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FFI & C
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We cannot rewrite everything in Rust.

Sometimes we want to use a C library.

Why FFI
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We can call C function. We need to define it and link with the C binary.

https://doc.rust-lang.org/nomicon/ffi.html

FFI
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https://doc.rust-lang.org/nomicon/ffi.html


We can 

generate the 

functions using 

bindgen

Let’s automate
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Output the file 

and let the 

compiler link 

with the C 

binary

Let’s automate
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https://github.com/nrf-rs/nrfxlib-sys

Now we can use it
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https://github.com/nrf-rs/nrfxlib-sys


Use the low 

level C function 

to create a 

proper Rust 

wrapper

High level 
wrapper
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Easy to use, 

hard to misuse

Very nice 
interface
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Now we can use it
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Castellastraat 26, 6512 EX Nijmegen

info@tweedegolf.com

024 3010 484
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