
What’s Rust all about?

Presentation by Dion Dokter

1

Who am I?

● Dion Dokter

● Bachelor’s Applied Computer Science at Saxion Enschede

● (Embedded) Rust since 2019

● Joined TG in late-2021

● @Geoxion on Twitter

● LoRaWAN IoT

● UWB Real Time Localization System

● Async IoT with LTE

Introduction

2

Topics:

● Rust language

● Rust embedded

● Rust, FFI & C

What to expect today?

3

The language

4

● Announced in 2010 by Mozilla & creator Graydon Hoare

● Aimed to replace C & C++ in Firefox

○ Initially with GC & green threads

● 1.0 version released in 2015

● Major edition upgrade in 2018 & 2021

○ Stable: Old code still compiles

● Now a foundation

● The project is on github

○ 74K stars

○ 4K+ contributors

Origins

5

According to the website rust-lang.org:

● Performance -> Systems software

○ No runtime

○ No garbage collector

● Reliability -> Safe software

○ Memory safety

○ Thread safety

● Productivity -> Happy developers

○ Friendly compiler

○ Tooling & docs

Why Rust?

6

Technical overview

● Compiled language (machine code, not bytecode)

● Strongly statically typed

○ Elaborate type system

● Imperative with functional aspects

● No GC or runtime

7

● No segfaults*

● No buffer overflows*

● No null pointers*

● No data races*

● Powerful type system

● Unified build system

● Dependency management

Compared to C & C++

8* In safe Rust (which is 99% of Rust)

Compared to C & C++

9

● Compile times

● Learning curve

● No certifications yet

○ Ferrocene

○ AUTOSAR

● Library maturity

Why not Rust?

10

C origins

Curly bracket

style

ML & Haskell

infused

Expression

oriented

Syntax
fn main() {

println!("Hello, World!");
}

fn is_prime(n: u32) -> bool {
let limit = (n as f32).sqrt() as u32;

for i in 2..=limit {
if n % i == 0 {

return false;
}

}

true
}

11

C origins

Curly bracket

style

ML & Haskell

infused

Expression

oriented

Syntax

fn is_prime(n: u32) -> bool {
let limit = (n as f32).sqrt() as u32;

(2..=limit).map(|i| n % i).all(|p| p != 0)
}

Generates (almost) the same assembly!

12

All references (pointers) are checked at compile time:

● Every value has an owner, the variable

● Access can be borrowed by other variables

○ At most 1 mutable borrow OR infinite immutable borrows

● Ownership can be transferred by moving

● Owner out of scope = value dropped

○ Similar to C++ RAII

○ No GC required

Ownership, moving & borrowing

13

let x = Vec::<u8>::new();

let y = x;

drop(x);

Good compiler feedback

14

let mut x = Vec::<u8>::new();

let y = &mut x;

let z = &mut x;

drop(y);

Good compiler feedback

15

● Structs implement traits

● Traits are like interfaces in Java

● Generic bounds using traits (not unlike C++ concepts)

● Monomorphization (not unlike C++ templates)

● No classic OOP, so traits are the main abstraction mechanic

Traits & generics

16

Use #[derive()]

to automatically

implement traits

Serde is really

cool btw

Traits &
generics

17

Enum variants

can contain

data.

Enums can

implement

functions &

traits.

Pattern

matching on

enums and

much more.

Enums

18

Increasingly popular

19https://tjpalmer.github.io/languish/

https://tjpalmer.github.io/languish/

7 years in a row,

Rust is the most

loved language.

https://survey.stack

overflow.co/2022/#

technology-most-

loved-dreaded-

and-wanted

Very well liked

20

https://survey.stackoverflow.co/2022/#technology-most-loved-dreaded-and-wanted

Lots of big players are investing

21https://foundation.rust-lang.org/members/

https://foundation.rust-lang.org/members/

Embedded

22

Rust embedded ecosystem

23

cargo, crates, rustccore, alloc, std probe-rs & more

Peripheral Access Crates

24

C

Rust

Overview

25

PAC

nRF52840

PAC

nRF9160

PAC

SAMD21E

PAC

STM32H743

PAC

STM32H753

PAC

STM32L476

PAC

STM32L496

● Many open source HALs

● Vendor HAL for RiscV ESP chips

● Also async support (embassy)

● Implementation of high level chip features

● Built on top of PACs

Device HALs

26

Device HALs

27

Overview

28

PAC

nRF52840

PAC

nRF9160

PAC

SAMD21E

PAC

STM32H743

PAC

STM32H753

PAC

STM32L476

PAC

STM32L496

HAL

atsamd

HAL

nrf-hal

HAL

stm32h7xx-hal

HAL

stm32l4xx-hal

`Embedded-hal` is the glue of the entire ecosystem

● Contains abstractions for many common operations

● SPI example trait:

Cooperation

29
FYI: SPI (Serial Peripheral Interface) is a common communication

protocol to talk with other devices

Overview

30

PAC

nRF52840

PAC

nRF9160

PAC

SAMD21E

PAC

STM32H743

PAC

STM32H753

PAC

STM32L476

PAC

STM32L496

HAL

atsamd

HAL

nrf-hal

HAL

stm32h7xx-hal

HAL

stm32l4xx-hal

embedded-hal

Traits + generics

● Reuse traits from

embedded-hal

● Efficient

● Convenient

Frustrating in C

• No standards

• No abstractions

• Function pointers?

• Extern functions?

• Fork & implement in

library?

Device drivers

31

Overview

32

PAC

nRF52840

PAC

nRF9160

PAC

SAMD21E

PAC

STM32H743

PAC

STM32H753

PAC

STM32L476

PAC

STM32L496

HAL

atsamd

HAL

nrf-hal

HAL

stm32h7xx-hal

HAL

stm32l4xx-hal

embedded-hal

Driver

Bare metal +
interrupts

Runtimes

33

Async

(blog posts)

RTIC RTOS

● Program low level devices in a

high level language

○ More productive

○ Fewer bugs

○ We can still do the

same cool things

So why embedded Rust?

34

Extra tools

35

Built-in unit

testing

Tools

36

Clippy:

● Prevent common mistakes

● Small efficiency improvements

Tools

37

Docs:

Markdown

Generated to

html (like

doxygen)

docs.rs

Tools

38

Docs:

Markdown

Generated to

html (like

doxygen)

docs.rs

Tools

39

● Cargo: Package manager & build system

● rustfmt: Code formatting

● Knurling-rs (embedded)

○ Probe-run

○ Defmt

● Criterion: Microbenchmarking

● Bindings

○ rust-bindgen

○ cxx

● Any text editor using LSP (for Rust Analyzer plugin)

● Any IntelliJ IDE (for IntelliJ Rust plugin)

Many more tools

40

FFI & C

41

We cannot rewrite everything in Rust.

Sometimes we want to use a C library.

Why FFI

42

We can call C function. We need to define it and link with the C binary.

https://doc.rust-lang.org/nomicon/ffi.html

FFI

43

https://doc.rust-lang.org/nomicon/ffi.html

We can

generate the

functions using

bindgen

Let’s automate

44

Output the file

and let the

compiler link

with the C

binary

Let’s automate

45

https://github.com/nrf-rs/nrfxlib-sys

Now we can use it

46

https://github.com/nrf-rs/nrfxlib-sys

Use the low

level C function

to create a

proper Rust

wrapper

High level
wrapper

47

Easy to use,

hard to misuse

Very nice
interface

48

Now we can use it

49

Castellastraat 26, 6512 EX Nijmegen

info@tweedegolf.com

024 3010 484

50

mailto:info@tweedegolf.com

